Kunci Jawaban
Kunci Jawaban Matematika Kelas 8 Halaman 51 Semester 2, Uji Kompetensi 6: Teorema Pythagoras
Berikut kunci jawaban Matematika kelas 8 halaman 51 semester 2, bagian Uji Kompetensi 6 soal esai nomor 7 dan 8.
Penulis:
Nurkhasanah
Editor:
Nanda Lusiana Saputri
Perhatikan Δ ACD siku-siku di D,
∠ CAD = 60° dan ∠ ACD = 30°
AC : AD = 2 : 1
AC : 8 = 2 : 1
AC = 8 × 2
AC = 16 cm
AD : CD = 1 : √3
8 : CD = 1 : √3
8 / CD = 1 / √3
CD = 8 × √3
CD = 8√3 cm
Keliling Δ ACD = AD + CD + AC
= 8 cm + 8√3 cm + 16 cm
= 24 cm + 8√3 cm
= 8 (3 + √3) cm
Jadi, keliling segitiga ACD adalah 8 (3 + √3) cm.
Baca juga: Kunci Jawaban Matematika Kelas 8 Halaman 48 Semester 2, Uji Kompetensi 6: Teorema Pythagoras
b. Apakah hubungan antara keliling segitiga ACD dan ABC?
Jawaban:
Perhatikan Δ ABC siku-siku di C, AC = 16 cm, ∠ CBA = 30° dan ∠ BAC = 60°
AC : BC = 1 : √3
16 : BC = 1 : √3
16 / BC = 1 / √3
BC = 16 × √3
BC = 16√3 cm
AC : AB = 1 : 2
16 : AB = 1 : 2
16 / AB = 1 / 2
AB = 16 × 2
AB = 32 cm
Keliling Δ ABC = AB + BC + AC
= 32 cm + 16√3 + 16 cm
= 48 cm + 16√3 cm
= 16 (3 + √3) cm
Hubungan keliling Δ ACD dan Δ ABC
Selisih keliling Δ ABC dan Δ ACD
= 16 (3 + √3) cm - 8 (3 + √3) cm
= 8 (3 + √3) cm
Perbandingan keliling Δ ACD dan Δ ABC
= 8 (3 + √3) : 16 (3 + √3)
= 1 : 2
Jadi, perbandingan keliling Δ ACD dan Δ ABC adalah 1 : 2
Baca juga: Kunci Jawaban Matematika Kelas 8 Halaman 47 Semester 2, Uji Kompetensi 6: Teorema Pythagoras