Selasa, 9 September 2025

Kunci Jawaban

Kunci Jawaban Matematika Kelas 12 Halaman 127 Semester 2: Latihan 3.1 Peluang, Permutasi, Kombinasi

Berikut kunci jawaban Matematika kelas 12 halaman 127 semester 2 tentang peluang, permutasi, dan kombinasi.

Penulis: Isti Prasetya
Tangkapan Layar Buku Matematika Kelas 12 Semester 2
Berikut kunci jawaban Matematika kelas 12 halaman 127 semester 2 tentang peluang, permutasi, dan kombinasi. 

Pembahasan :

Permutasi merupakan langkah penyusunan kembali suatu kumpulan objek yang urutannya berbeda dari urutan semula.Untuk menyelesaikan soal di atas, gunakan konsep faktorial dari permutasi.

Persamaan konsep faktorial permutasi : n! = n×(n-1)×(n-2)×(n-3)...×3×2×1

Diketahui:
Huruf-huruf terdiri dari A, B, C, D, E, F, G, H

Ditanyakan:
Banyak cara permutasi ?

Jawaban:

a. Susunan BCD
Dikarenakan BCD selalu bersama makan dapat disatukan menjadi satu unsur (BCD)AEFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 6 unsur saja dengan menggunakan persamaan
6! = 6 × 5 × 4 × 3 × 2 × 1
6! = 720
Banyaknya permutasi susunan BCD adalah 720

b. Susunan CFGA
Dikarenakan CFGA selalu bersama makan dapat disatukan menjadi satu unsur (CFGA)BEDH. Hal tersebut mebuat kita hanya mencari permutasi untuk 5 unsur saja dengan menggunakan persamaan
5! = 5 × 4 × 3 × 2 × 1
5! = 120
Banyaknya permutasi susunan CFGA adalah 120

c. Susunan BA atau GA
Dikarenakan BA selalu bersama makan dapat disatukan menjadi satu unsur (BA)CDEFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 7 unsur saja dengan menggunakan persamaan
7! = 7 x 5 x 4 x 3 x 2 x 1
7!= 5040
Banyaknya permutasi susunan BA adalah 5040

Dikarenakan GA selalu bersama makan dapat disatukan menjadi satu unsur (GA)BCDEFH. Hal tersebut mebuat kita hanya mencari permutasi untuk 7 unsur saja dengan menggunakan persamaan
7! = 7 x 5 x 4 x 3 x 2 x 1
7!= 5040
Banyaknya permutasi susunan GA adalah 5040

Banyaknya permutasi susunan BA atau GA
5040 + 5040 = 10080
Susunan ABC atau DE

Dikarenakan ABC selalu bersama makan dapat disatukan menjadi satu unsur (ABC)DEFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 6 unsur saja dengan menggunakan persamaan
6! = 6 × 5 × 4 × 3 × 2 × 1
6! = 720
Banyaknya permutasi susunan ABC adalah 720

Dikarenakan DE selalu bersama makan dapat disatukan menjadi satu unsur (DE)ABCFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 7 unsur saja dengan menggunakan persamaan
7! = 7 x 5 x 4 x 3 x 2 x 1
7!= 5040
Banyaknya permutasi susunan DE adalah 5040
Banyaknya permutasi susunan ABC atau DE
720 + 5040 = 5760

d. Susunan ABC atau CDE
Dikarenakan ABC selalu bersama makan dapat disatukan menjadi satu unsur(ABC)DEFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 6 unsur saja dengan menggunakan persamaan
6! = 6 × 5 × 4 × 3 × 2 × 1
6! = 720
Banyaknya permutasi susunan ABC adalah 720
Dikarenakan CDE selalu bersama makan dapat disatukan menjadi satu unsur (CDE)ABFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 6 unsur saja dengan menggunakan persamaan
6! = 6 × 5 × 4 × 3 × 2 × 1
6! = 720
Banyaknya permutasi susunan CDE adalah 720
Banyaknya permutasi susunan ABC atau CDE
720 + 720 = 1440

e. Susunan CBA atau BED
Dikarenakan CBA selalu bersama makan dapat disatukan menjadi satu unsur (CBA)DEFGH. Hal tersebut mebuat kita hanya mencari permutasi untuk 6 unsur saja dengan menggunakan persamaan
6! = 6 × 5 × 4 × 3 × 2 × 1
6! = 720
Banyaknya permutasi susunan CBA adalah 720

Halaman
1234
Sumber: TribunSolo.com
Rekomendasi untuk Anda

Berita Terkini

© 2025 TribunNews.com, a subsidiary of KG Media. All Right Reserved
About Us Help Privacy Policy Terms of Use Contact Us Pedoman Media Siber Redaksi Info iklan